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Received 6 August 1990 

Abstract. We invesligate the zero-temperature phase diagram of the single-band Hubbard 
model in two and three dimensions, with an emphasis on the region where ferromagnetism 
occurs. To determine the equilibrium value of the magnetization m, we compute the expec- 
tation value of the Hamiltonian using a Gutnviller variational wavefunction for arbitrary 
valuesofm. Analyticcalculations are performed using an improvedGutnviller-type approd- 
mation. In twodimensions wepredict aht-order transition from asaturated ferromagnetic 
state to a paramagnetic state. I n  three dimensions we find both a lint-order and a second- 
order transition depending on the values of the Coulomb repulsion U and the hole con- 
centration 6. We also discuss the possibility that the system phase separates into a region 
with a large hole concentration and a region with few holes. 

1. Introduction 

Ferromagnetism in metals has proved very difficult to understand adequately. This is 
because, on the one hand, the electrons which give rise to the magnetism are also 
involved in conduction so that one cannot use the relatively simple localized effective 
Hamiltonians, such as the Heisenberg model, which are good approximations for insu- 
lators while, on the other hand, correlations are very important so that the one-electron 
picture (band theory) is inadequate. It is, however, clearly important to try to learn what 
are the conditions under which ferromagnetism occurs in metals. In particular, one 
would like to know whether Hund's rule couplings between different orbitals on the 
samesite, whichoccur in real magneticmetalsand whichcertainly help ferromagnetism, 
are essential for ferromagnetism to occur or not. This is one of the main reasons for the 
interest in the one-band Hubbard model [l], which of course does not have such 
interactions. 

The Hamiltonian of the Hubbard model is 

H =  -t cfmci, + U E n , l . n , j  (1.1) 
W),o i 

where (i, j )  indicates a nearest-neighbour pair, with both (i, j )  and (j, i) being counted 
separately, c$ and c,, are the creation and annihilation operators of an electron in the 
site i, and nio = c~,ci,. The repulsion of an up spin and a down spin on the same site is 
represented by the interaction Uand the kinetic energy is represented by a tight-binding 
model with hopping integral t. In the limit that Uis much greater than t ,  the Hubbard 
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model can be represented by an effective Hamiltonian, equations (2.1) below, in which 
doubly occupied sites do not occur explicitly, but virtual states with doubly occupied 
sites give rise to antiferromagnetic superexchange [2],  which does appear explicitly in 
the Hamiltonian. 

It has proved very difficult to demonstrate whether or not this model has a ferro- 
magnetic phase. One approach that has been fairly successful is the use of variational 
wavefunctions of the type proposed originally by GutnviUer [3], which include cor- 
relation effects due to the on-site repulsion by suppressing doubly occupied sites. 

In this paper we investigate the global phase diagram of the Hubbard model in the 
region for large U where ferromagnetism is expected to occur. We use Gutzwiller-type 
variational wavefunctions but for the effectiveHamiltonian HF*in equation @l), rather 
than for the Hubbard model itself, because we find that this p e s  more reliable results. 
We map out the region of the phase diagram where ferromagnetism occurs and also 
investigate the range of parameters where the system phase separates into a region with 
a high concentration of holes and an antiferromagnetic region with no holes. We did not 
investigate the possibility of superconductivity in this model, which has become a 
fashionable topic [4] since the discovery of high-temperature superconductors. If it 
occurs at all. superconductivity would appear at larger values of the ratio r/U than 
studied here. 
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2. Effective Hamiltonian in the large-U limit 

There are two ways of computing the energy of the Hubbard model for large U and 
arbitrary magnetization m using a Gutnviller wavefunction. The first is to work in the 
full Hilbert space of states using the traditional Gutzwiller [3] wavefunction with a 
variational parameterg which varies the (incomplete) projection of the doubly occupied 
sites. The second possibility, which we pursue in this paper, consists in working in the 
subspace of single occupied states with an effective Hamiltonian [5 ,6 ]  derived from the 
original Hubbard Hamiltonian through a unitary transformation. As pointed out by 
Rice and co-workers [7], this second choice gives more competitive energies at large U 
even if the wavefunction to be used does not have any variational parameters, because 
the effective Hamiltonian takes into account in an exact way (to leading order in t /U)  
the hopping processes in which a doubly occupied site is created in a virtual state. The 
net effect is that using a Gutnviller wavefunction in the restricted subspace is the same 
as working in the full Hilbert space but using a modified wavefunction which contains 
doubly occupied sites in some optimal sense and, for this reason, gives very competitive 
energies. 

In the limit of large U we can derive an effective Hamiltonian by treating the kinetic 
term as a perturbation and by going to second order in perturbation theory [5,6].  One 
obtains 

Heii = Hkin + Hai f Hpair (2.1) 
where 
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In equations (2.2)-(2.4), Po = ni(l - n i t n i r )  is the projector restricting the action of 
He, to the subspace of singly occupied states, ni = Zoni,,, Sy = 4 Z o b ~ ~ o r ~ , , ~ ~ i d  is the 
mth component of the spin operator (the zFd are elements of the Pauli matrices), J = 
49 /U,  and the angular brackets (i, ])in equation (2.3) indicate that each distinct nearest- 
neighbour pair is to be included just once. The prime on the sum in equation (2.4) 
indicates that terms with i = 1 have to be omitted since they have already been included 
in Hd. One can recognize Ha, as the familiar antiferromagnetic interaction due to 
superexchange, whereas H+, corresponds to the often neglected kinetic energy term 
associated with the next-nearest-neighbour hopping of holes with and without spin i3p. 
The familiar t-J model is obtained if we neglect Hpair 

In this paper we shall use this effective Hamiltonian in conjunction with the Gutz- 
willer wavefunction 

IV) = POIVO) 
where 

in which C I . ~  is the operator creating an electron of spin o in the plane-wave state of 
crystal momentum k, and 10) is the vacuum state. Note that, in general, we shall be 
interested in the case in which the up and down bands are not equally populated so that 
the states I&) and I@) have a net magnetization. 

It is important to clarify at this stage that, although variational estimates obtained 
by using Herr and ly) are not, strictly speaking, rigorous bounds on the energy of the 
Hubbard Hamiltonian described by equation (l.l), these estimates are nevertheless 
comect toordert/Uand are thereforeclose to being rigorous boundssince ourpredictions 
will be for the region where t/U Q 1. A simple way to undeistand this point is to realize 
[7] that one can construct a unitary transformation exp(iS) such that 

exp(iS)Hexp(-is) = Hef~f O[(t/U)*] (2.7) 
in the subspace of singly occupied states. The operator exp(iS), which transforms the 
unperturbed states, which are eigenstates of KZinXtnir, into the true eigenstates of the 
Hubhard Hamiltonian, can be derived by using perturbation theory. To order t/Uone 
finds that 

where PI is the projector on the subspace with one double occupancy: PI  =&ni, ni lli*i 
(1 - nj in j i ) .  From equation (2.7) it is then trivial to show that (+lHettlt)) = 
(QIHlV) + O[(t/U)*],whereIq) = exp(-iS)lly). Hence,using(q)andH,,isequivalent, 
to order t /U,  to using H a n d  a modified Gutzwiller state containing doubly occupied 
sites. It is easy to see from equation (2.8) that the net magnetization of the state Iq) is 
not modified by this unitary transformation. 

Note that in the definition of Hea we keep the pair-hopping kinetic term given by 
Hpah. The reason for doing this is that we are interested in investigating the phase 
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diagram for all the values of the hole density 6 and hence, if 6 is not too small, H,,, 
might be comparable with Hd, since it is of the same order in f / U .  We have explicitly 
verified, however, that all the qualitative predictions to be made remain unchanged if 
we neglect HPai, and restrict the analysis to the t-J Hamiltonian instead. 
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3. Improved Gutzwiiler approximation 

Before explaining how to compute the desired expectation values, let us first introduce 
some useful notation. We denote by N t  and N1 the number of up and down electrons 
respectively, and by n, = No,” ( U  = 1 , t ), the corresponding density, where Nis the 
total number of sites in the system. The density S of holes is given by 6 = 1 - n I - n ,  , 
andthemagnetizationofthestate[S]bym = n t  - “1. Givenacertain6, theGutnvillier 
state I1y)m of magnetization is obtained by choosing IVo} in equation (2.5) so that the 
lowest N t  levels in the up and band, and the lowest N i  levels in the down band are 
occupied, withn, = (1 + m - 6) /2  and n I = (1 - m - 6)/2. 

We would like to compute the energy of the state with magnetization m which is 
given by 

&(m) 5 (1,”) ((VlfLalV)/(VlV)) (3.1) 
where the up-spin and down-spin bands in state Iqa) in equation (2.5) are filled so as to 
leave a net magnetization per site of m. The states IV) and I&} have the same mag- 
netization because the Hamiltonian and the projector P,conservethe totalr-component 
of the spin. The minimum of E&) as a function of m determines the equilibrium 
magnetization. Note that, because of symmetry, E,(m) is an even function of m and that 
Iml S 1 - 6,withm = mma = 1 - 6correspondingtothesaturatedferromagneticstate. 

Unfortunately, it does not seem possible toperform an analyticcalculation of EG(m) 
for arbitrary values of m, because the presence of the infinite product of site operators 
which appears in the definition of the Gutzwiller state makes the problem quite untrac- 
table. We shall therefore have to make approximations in evaluating the averages in 
equation (3.1). These will be very similar in spirit to the approximation originally 
adopted by Gutzwiller [3] and later elucidated further by Ogawa eta1 [9]. Gutzwiller- 
like approximations have been used very recently [lo] to investigate the properties of 
flux phases in the t-.I model, and in that context as well as in the case of the one- 
dimensional Hubbardmodel [7] they have been shown to bequantitatively reliable when 
compared with the exact expectation value computed by numerical techniques. The 
great advantage of a closed-form expression for Ed(m), albeit approximate, is that the 
parameterspace,inbothtwoand threedimensions,canbevery thoroughlyinvestigated, 
making it possible to obtain a rather detailed picture of some of the magnetic phase 
transitions whose qualitative features, we believe, should persist even if E6(m) were 
computed exactly from the Gutzwiller wavefunction, e.g. by variational Monte Carlo 
techniques [Ill.  

We now discuss the approximations that we used. As already stressed, everything 
could be computed relatively easily if we had to deal with IVO}. It is the projector Po 
which makes the problem hard. The idea of our approximation, like that of the other 
Gutzwiller-like approximations [3,6,13], is that we can project away doubly occupied 
sites in an average sense by using combinatorics, and that the net effect of this 
projection can be incorporated in a simple renormalization of some matrix elements 
computed by using the uncorrelated [12] state I&). 
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In the Hamiltonian, equation (2.1), both Hkin and Ha, involve only nearest pairs of 
sites, and we shall firstly discuss how the approximation is used to compute the expec- 
tation value of these pair operators. Later we shall describe how it applies to the third 
term Hpair in equation (2.1). Let us therefore consider the expectation value of some 
pair operator Oy, which isgiven by 

(Oij) = (VlOijlV)/(VlY) ( v o I P ~ ~ ~ ~ P ~ I v ~ ~ ~ ( ~ ~ / ~ o ~ w O ) ~  (3.2) 
The local spin configuration at site i and j is defined by the projector J?pJ?,8 where the 
index CY denotes either an up or down spin, Pp = (1 - tz;-,,)nio, or an empty site 
Pf = (1 - ni  )(1 - nil ). We therefore approximate the expectation value of 0, as a 
sum over all allowed configurations of the two sites i and j, weighted by a factor q". 
which is a mean-field estimate of the probability that such a configuration of the two-site 
cluster actually occurs in the full wavefunction, i.e. 

( Y O  Ipo~ijpO~~o) X ~ " ' ( v O  I(1- ai ni 1 ) (1 - nit  n j l  )Oi,PPP,B Iqo).  (3.3) 
4 

To determine the qeO, consider the spin configurations on the N - 2 sites different 
from i and j .  Depending on the configuration specified by CY and P there will be 
N ,  (CY, p) up spins and N I  (CY, p) down spins which can be arranged on these N - 2 
sites; for example, if there is an up spin at i, CY = T , and an empty site at j ,  p = e, 
then N i ( o r , p )  = N ,  -1, N J ( c Y , ~ )  = N I .  The physical assumption we make is that 
all configurations of electrons on the remaining N - 2 sites, with or without double 
occupancy, give the same contribution to the expectation value in the uncorrelated 
state !Yo). This means that qeo is the ratio of the number of configurations of the 
electrons on these N - 2 sites satisfying the constraint of no double occupancy, D = 
0, to the total number of configurations including those with double occupancy, i.e. 

where 

~ ~ ( f l ,  N ~ ,  N ~ )  = f i ! / ( ~ ,  - D ) ! ( N ~  - D ) D ! ( ~  - N ,  - N &  + D)! (3.46) 

is the number of configurations for flsites, N ,  up spins, N J  down spins, and D doubly 
occupied sites. In the limit of large N ,  NT and N 1  , one can obtain a simple expression 
for qn', We can write 

MD=,(N-~,NT(cY,B),NI(cY,P))=MD=o(N,NT , N ~ ) q g = o q & = o  

M D ( N -  2, Ny (CY, PI, NL (01, P))  = ~ M D ( N ,  NT, N L  ) P q S  
D D 

where is the probability of finding the configuration CY at site i in an ensemble 
without double occupancy (so q&o = n,, qge0 = (1 - n - n I ) ) ,  whereas qe is the 
analogous probability without any constraint on the occupancy of the sites (in which 
caseq"= (1 -n&O,qP=( l  - n r ) ( l  -n~)).Itisthenclearthatq~p=Cq~q~,where 
qw= qf,=o/q';soqu= 1/(1- n-& qe = (1 - " 1  -",)/[(I - n,)(l - nL)] .~hecon-  
stant C, which is independent of the spin configuration, drops out of the calculation 
when we compute the ratio of matrix elements in equation (3.2). 
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If we now sum over the possible local spin configurations CY and p ,  we obtain the 
desired result 
( ~ u ) x ( ~ o l ( l  - n i t n i r ) ( l  -~,t~ii)~~~iBjlYo)l(~oIPiPilYo~ (3.5a) 

where 

$ 1  = q= 
n 

is  given by 
,ji = 1 - ( n t  - n i , ) ( n l  -nii)/(l - n l ) ( l  - n 1  ). (3.5b) 

Note thatji vanishes fordoubleoccupiedsites; so thefactorsof 1 - nit ni l  are unnecess- 
ary in the denominator of equation ( 3 . 5 ~ ) .  The matrix elements on the right-hand side 
ofequation (3.5~) can now beevaluated explicitly, forinstance by using Wick's theorem. 

Note that in the above analysis we have incorporated correlations within the cluster 
of two sites, i and j ,  explicitly and treated correlations outside the cluster within a mean- 
field-like approximation. In order to evaluate the expectation value of a three-site 
operator, such as Hpair, still within a two-site cluster approximation, we select one of the 
nearest-neighbour pairsin the three-site term, iandjsay, and then work out the average 
precisely as in equation (3.5a), i.e. 

(3.6) 

where 0, denotes the three-site operator. It would clearly be equivalent, once the sites 
are summed over, to use the other nearest-neighbour pair, 6, I), as the cluster. The 
original Gutzwiller [3] approximation for the kinetic energy could be obtained by a 
similar approach, but for a one-site cluster [ 141. In our calculations we have taken a two- 
site cluster because 

3 ( ~ o l ( 1 -  E;? nil )(I - n,tn,l )O~~PiBjlYo)/(VolBiBjl~~) 

(i) the evaluation of the matrix elements is still manageable in this case and 
(ii) this level of approximation is necessary to get quantitative agreement with the 

exact expectation valuein the only limit in which anexact analyticcalculation is possible, 
namely in the neighbourhood of the saturated ferromagnet, m = mmax. 

We shall return to this point later on. 
Because ofthefactorizationofq"notedabove,one can alsogeneralizeourequations 

toarhitrarilylargeclusters. Consideraclusterwithmsites,i,,i2,. . ., im, andanoperator 
which fits entirely into it. To be specific consider a two-site operator Oil, although the 
generalization to other operators is obvious. We find that 

m m 

( ~ j t )  e ( ~ o I ( 1 -  n, fn j i  - "/T n / i . P j t  I1 ~2~ I ~ V O ) / ( V O I  II pi, I 1~o ) .  (3.7) 
D =  I *=1 

In fact, our approximation scheme turns out to be equivalent to the cluster fac- 
torization procedure described by Razafimandimby [14], and it is worthwhile to discuss 
this connection in a little more detail. In the limit of very large U, the work of Raz- 
ifimandimby effectively involves the operator 

P i = l - n l  - n l  +ninii + n l n i T  - n i t n i l  (3.8) 

where, to avoid confusion, we recall that n T and n are f-numbers, whereas ni and 
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nil are operators, and note that Pi = (1 - n T)( l  - n &)bi. It is easy to verify that Pi 
is non-negative and projects to zero a doubly occupied state at site i. Razafimandimby 
then considers the state I$) = l l i P ~ ’ 2 1 ~ O ) ,  which satisfies the constraint of single 
occupancy and could also be used as a variational state. Note that I$) is rather close 
to the Gutzwiller state. For example, exactly at half-filling and for m = 0, it is quite 
easy to check that IQ) is proportional to the Gutmiller state. In general, however, 
the two states are distinct. In Razafimandimby’s factorization scheme one writes 

m m m - 
(Oil) = ~710ij14)/(~17) = (1vol n (Pi,)”ZOj, n ( ~ i ~ ) ’ ~ l Y 0 ) / ( 1 v O l  ‘Y=l rI PiAYO). 

a= 1 *=1 

(3.9) - 
It is shown in appendix 1 that (Oi l )  is equal to [U] (OJ) in equation (3.7). Hence, by 
increasing the cluster size, our method does not converge [16] to the exact expectation 
value obtained by using the Gutzwiller state, equation (2.5), but rather to that obtained 
by using the state I$). Furthermore, the Gutzwiller approximation can be considered as 
the first expression in a systematic expansion giving expectation values computed with 
this variational state. The approximation used here then corresponds to the second level 
of approximation in this scheme. 

We now go back to the application of the method. As shown in appendix 2, a 
somewhat lengthy but straightforward calculation starting from equation (3.5~) gives 
the following expression for the energy: 

Ed@) = E p ( m )  + @ ( m )  + 
where 

(3. loa) 1 - n l  - n l  E$@) = z 

E f b )  = -W/2(1vIYMb T ( e h  4 (e,) 

ZP0(ex)l1 - P%r)I 
<*11/1)2 0 

+ [n  7 + (1 - n T )P’T ( e d l b  I + (1 - n 1 ( e JD (3.10b) 

(3.10~) 

(3.11) 

(3.12) 

and z is the coordination number. We use a square lattice in two dimensions for which 
e, = a(1,O) and e,. = a(0, l) ,  where a is the lattice spacing, and we have chosen energy 
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unitsinwhicht = 1. Inthreedimensionsweuseasimplecubiclatticewithe, = a(l ,O,O) 
and e, = a(O,I,  0) .  The formulae can easily be generalized to other lattice structures. 
One should keep in mind that the dependence of the previous expressions on m and 6 
comes from the factors no, and from the integration region in equation (3.12) which, 
through kF,, also depends on m and 6 .  We see in this way that the evaluation of E6(m) 
is reduced to the computation of the integrals in equation (3.12) over the Brillouin zone 
for arbitrary values of m and 6. The integral over k, can be performed analytically 
leaving a d  - 1-dimensional integral to be evaluated numerically. 

Several comments about equations (3.10) are now in order. A trivial check on E6(m) 
is that it reduces to the correct expression of the energy of a saturated ferromagnet when 
m = mmu. In this limit n 1 = p i  = 0 and E6 (mm,) = z6pt (e,) as expected. A more 
important test can bedoneif we lookat theneighbourhoodofm,,, where the variational 
wavefunction corresponds to a saturated ferromagnet with a single spin Rip. More 
specifically one can compute AE6 = E,(l spin Rip) - Epg where Epg is the energy of 
the saturated ferromagnetic state (Nagaoka state). The saturated feromagnetic state is 
locally stable if thisquantity is positive (171. From our point of view is easy to compute 
AE, because 

(3.13) 

By computing aE6/amlmmU and setting it  equal to zero we can compute the curve of 
local stability in the J-6 plane and compare it with the exact calculation performed in the 
one-spin-Rip subspace. It turns out that, because of the structure of our approximation 
scheme [MI, the quantitative agreement is indeed very good, as can be seen in figure 1. 
In fact, our approximation gives the exact energy for a single spin Rip, if Hpalr can be 
neglected, which is valid For 6 -+ 0. The Gutmiller approximation (which is essentially 
the one-site cluster approximation) does not have this desirable property. 

In order to get a feeling of the validity of the approximation in the opposite limit of 
zero magnetization, we have compared the value obtained for E p ( m  = 0) in the one- 
dimensional case with the exact [I91 curve obtained by Rice and co-workers [7] using 
Monte Carlo techniques. We have found that the quantitative agreement in the case 
m = Oisverysimilartothatobtainedusingthe Gutzwillerapproximation (whichamounts 
to seting equal to unity the term in parentheses in equation (3. loa)) and is rather good 
in the whole range of hole densities. 

We can now proceed with a discussion of the magnetic phase transitions implied by 
equations (3.10). Since some of the qualitative features turn out to be different in two 
and three dimensions, we shall consider these two cases separately. 

A Barbieri and A P Young 

AEb =ME&,, - 2 / N )  - E6(mm,,)1= -2(%/Wlm,. 

4. Results in two dimensions 

First we shall address the question of the transition between the ferromagnetic and 
paramagnetic states, and later we shall discuss the possibility of phase separation [ZO, 

The function E6(m) is even in m and therefore the paramagnetic state will be either 
a local minimum or a local maximum. By considering the curve of local stability we 
already know that the state with m = mmar is a local minimum in the region of small J 
and 6 < 0.49. Furthermore, because Eif(m) describes an antiferromagnetic coupling, 
we know that this term has a global minimum at m = 0. This term becomes more 

211. 
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0.00 0.10 0.20 0.30 0.40 0.50 

d 
Figure 1. Test of the validity of the two-site 
cluster approximation in the neighbourhood of 
m = m-. The full curve is the curve above which 
theNagaoka state is locally unstable, computed 
by evaluating (9,J without any approximations 
in the one-spin-flip subspace. The broken curve 
is the analogous curve obtained by using the 
approximate expressions in equations (3.100)- 
(3. IOc) andsolving theequation (J€dJm)lmmu = 
0. This shows that the two-site cluster approxi- 
mation is quite accurate, at least for m close to 
mmW In fact, as discussed in the text, the only 
approximation made in the limit of m + m., is 
for the pair-hopping term in the effective Ham- 
iltonian, equation (2.4); the treatment of Hun 
and H, is exact. 

O.OOI/ '  ' ' ' ' ' ' ' \ .I ! 

0.00 0.10 0.20 0.30 0.40 0.50 

6 
Figure 2. Phase diagram of the two-dimensional 
Hubbard model at large U obtained by using a 
Gutzwiller wavefunction to estimate the energy 
of the different relevant phases. Expectation val- 
ues have been computed within an improved 
Gutzwiller-type approximation (see equations 
(3.10a~(3.10c)). In the shadedregion thesystem 
phase separates into an antiferromagnetic phase 
without holes and a homogeneous hole-rich 
phase; the region labelled F ,  corresponds to a 
saturated ferromagnetic phase (Nagaoka state), 
and that by P to a paramagnetic phase. The 
broken curve indicates where the Nagaoka state 
becomes locally unstable against a single spin 
flip. 

important for larger vaIues of J.  The competition between these two local minima will 
determine the nature of the phase transition. 

In two dimensions this picture turns out to be rather simple. Let usconsider ageneric 
value of 6, say 6 = 0.2, and, starting from J = 0, slowly increase the value of J .  At J = 
0 the paramagnetic state is a local maximum, and the global minimum is the saturated 
ferromagnet. As we increase J, m = 0 becomes a local minimum but, when this occurs, 
the state with m = mmm, is still the global minimum. It is only when Jreaches a critical 
value, J =J,,(6),  that the paramagnetic state becomes the global minimum and a first- 
order phase transition, in which m jumps from mmax to 0, takes place. This is illustrated 
infigure2, where we plot the curveJ,(S) at which this transitionoccurs. Forcomparison, 
the broken curve in figure 2 indicates where the saturated ferromagnet becomes locally 
unstable. 

However, there is an additionalcomplication, namely the possibility that the system 
can phase separate [20,21] into a region rich in holes and an antiferromagnetic region 
with no holes. The energy of the antiferromagnetic domain can be evaluated very 
accurately by using the results of numerical simulations [22], whereas the energy of the 
hole-rich phase can be estimated by using the global minimum of &(m) at the appro- 
priate value of 6. We omit the derivation of this phase boundary, which is essentially 
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0.04, , 1 , I , I , 
,3 r,// 3d large U Hubbard model 

P 0.1 

t’U 0.02 K L  / 1 
O.L. I /  

1 1  

0.00 
0.00 0.20 0.40 0.60 0.80 

Flgure3. Phase diagramof the three.dimensional 
Hubbard model at large U obtained by using a 
G u m e r  wavefunction to estimate the energy 
of the diKerent relevant phases. Expectation val- 
ues have been computed within an improved 
Gutmiller-type approximation (see equations 
(3.100)-(3. lof)). In the shaded region the system 
phase separates into an antiferromagnetic phase 
without holes and an homogeneous hole-rich 
phase; F,, corresponds to a saturated ferro- 
magnet, F to a ferromagnet with 0 b m b m-, 
and P to a paramagnet. The broken and full 
cun’es correspond to continuous~and first-order 
transitions, respectively. 

6 

identical with that given by Emery eta[[21] and just discuss the results which are plotted 
in the phase diagram (figure 2). 

The shaded region corresponds to phase separation; so values of 6 and t /U in this 
region will not be found in an homogeneous system. The region marked F,, corresponds 
to a saturated ferromagnet, and the region marked P is a paramagnet. The transition 
between the saturated ferromagnetic and paramagnetic phases is, of course, first order 
as noted above. It is worth noting that the ferromagnetic pocket is restricted to very 
small values ofJas other calculations [17,23] had already pointed out. This justifies our 
use of If,,, rather than the Hubbard Hamiltonian, when investigating the ferromagnetic 
region. 

5. Results in three dimensions 

The structure of the phase diagram is even richer in three dimensions (figure 3). In this 
case we can distinguish a new region, labelled F, where the globally stable configuration 
corresponds to a state of partial magnetization, i.e. 0 < m C mmX. The broken curves 
in figure 3 indicate second-order transitions where m is continuous, while the full curves 
indicate first-order transitions with a discontinuity in m. Note that, in the saturated 
ferromagnetic state, m = mmax and, in the paramagnetic state, m = 0. The transition 
from the saturated ferromagnetic state to the paramagnetic state is always first order, 
whereas the transition between the saturated and partially magnetized ferromagnetic 
states is always continuous. The transition between the partially magnetized state and 
the paramagnetic state can be first or second order, depending on the path taken in 
parameter space. 

As in two dimensions, phase separation occurs for small 6, and we show the region 
which cannot exist as a single phase by the shaded region in figure 3. For this calculation, 
we obtained the energy of the antiferromagnetic state from the spin-wave calculation 
of Oguchi (241, including the 1/S correction. Since the analogous calculation in two 
dimensions agrees very well with the results of Monte Carlo simulations, e.g. [ZZ], and 
since we expect the calculation to be more accurate in three dimensions because the 
coordination number is higher, we estimate that this value for the ground-state energy 
should be accurate to within about 1%, which is sufficient for our purposes. 



Ferromagnetic transitions in the Hubbard model 1811 

We should, however, be quite cautious in taking the precise location of these phase 
boundaries too serious. In the ferromagnetic region, states of different magnetizations 
have energies which differ by only of the order of a few per cent, and therefore small 
errors made in evaluating the energy, either because of the approximations inherent in 
the wavefunction itself or in the additional approximations made in computing the 
matrix elements, might change, even qualitatively, the nature of the phase diagram. 

6. Conclusions 

We have investigated the ferromagnetic region of the phase diagram of the one-band 
Hubbard model at zero temperature by using a Gutzwiller wavefunction together with 
a two-site cluster approximation to evaluate the matrix elements. We find that ferro- 
magnetism only occurs for very large values of U/t, as shorn in figures 2 and 3. The 
transition from ferromagnetism to paramagnetism is strongly first order ford = 2, while 
it can be either first or second order for d = 3. For very small 6, the system phase 
separates. 

It is important to test, by variational Monte Carlo techniques, the validity of the two- 
site cluster approximation that we have used in this paper. In future work, we intend to 
investigate this question, and also to look at better variational wavefunctions. 
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Appendix 1 

In this appendix we show explicitly that the expectation values in equations (3.7) and 
(3.9) are equal. Although these equations refer to a two-site operator, it should be clear 
from the following analysis that the same conclusion also applies for an arbitrary local 
operator satisfying some general conditions to be specified shortly. 

First of all note that the operator P,commutes with 0,if r # j ,  1. We can then rewrite 
equation (3.9) as 
( ~ j , ) ~ ( y o I ( l - n j t n j ~ ) ( l - n f t n / 1 ) ( p j )  li2 ( p J 1n OjJ(p,) 1iZ  ( p )lh 

m 

(Al.l) 

where the factors 1 - ni nj 1 and 1 - n, nl 1 which have been inserted are equal to unity 
because the operators Pi and Pr suppress states with doubly occupied sites. Consider 
now the four possible operators acting onsite j ,  namely c:o, cj., cjoci-a and c ] & ~ ~ .  It is 
a simple matter now to verify the following equalities: 

(1 - n , , n j ~ ) ( P , ) l ~ ~ c ~ ~ ( P j ) ' ~ ~ = [ ( 1 - n ~ ) ' ~ / ( l  - n t  -nL)'fi](~ - n i , n i ~ ) c $ ~ j  

(1 - n , tn jL ) (P j ) ' r - c j~ (P j ) ' ~z  = [(l - n t  -ni)'"/(1 -n~)'~*](l-ni~nj~)ci,~, 

(A1.2) 

(A1.3) 
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(P,)l'*c~~c,-"P/)''~ = [(l - n0)@/(l - n-O)l'?]c;oc/-oP, (A1.4) 
and i t  is obvious that [(PI)'/?, n,=] = 0. Now the local operators that we are interested 
in conserve separately the total number of up and down electrons. Therefore, whenever 
in equation (Al.l)  there is an operator c,',,, there must also be an operator c,, and, 
analogously, S,' is necessarily associated with S i .  Hence we can rewrite equation 
(Al.l)  as 

A Barbieri and A P Young 

(A1.5) 
The equivalence between equations (3.7) and (3.9) follows directly by noting that oi 
defined in equation (3.56) is proportional to Pi. 

Appendix 2 

In this appendix we sketch the calculation leading to equations (3.10a)(3.10~) and 
equation (3.11). Let usstart with Hkn. We have 

z 
E kin (m)= - - x ( ( l  -n;tni i ) ( l  -ni~rz;~)c~,c, ,~j@,) (A2.1) (*I*)? 0 

where the expectation values in this appendix are always understood to he computed 
with the uncorrelated state IT&), and the operator0;is given in equation (3.6b). Because 
of the presence of c~,ci, we can replace n;, to the right (left) of c:, by zero (one), and nio 
to the right (left) of clo by one (zero). We also use the fact that states of opposite spins 
are completely uncorrelated in 1%) and rewrite equation (A2.1) as 

(A2.2) 

It is now simple to compute 
(cLc,M1 - n o )  = -P&) (A2.3) 
((1 - nd(1 -  n8+x,o))/(1 - no)Z = 1 - rZ,(4 (A2.4) 

where (lo is defined in equation (3.12), and to check explicitly that equation (A2.4) 
reduces to equation (3. loa).  In a similar way, using ((no- ai.)) = 0, we obtain 

(A2.5) 

Equation (3.11) now follows immediately because equation (A2.4) implies that 
( (no - nio ) (n ,  - ni+x,o))/(l - n,)* = -P%). (A2.6) 

In order to compute E f ( m )  it is first convenient to rewrite Hd in the equivalent 

H,=-X(S:S; +sys; -??,+a;& - n , i n i t )  (A2.7) 

where S: = CTr C ; J  and S; = cll C , r .  Following similar manipulations to what we did 
above for the kinetic energy term, we then obtain 
(vISZS;IW) = (ct+ KC;J c,+j ?/(I - + )(I - n J ) (A2.8) 
(I l , lnitnij l~)=(ni i ( l  -njt)Xnli(l   nil))/(^ - n r ) ( l  -nJ). (A2.9) 

With the help of equations (A2.3) and (A2.4). we then obtain equation (3.10b). 

J way: 

2 <i.i> 
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Finally we have to consider the contribution from Hpair. By going back to equation 
(2.4) we see we have to compute two terms which can be easily reduced to 

where (i, j )  and G, I )  are nearest-neighbour pain. These two expressions can now be 
explicitly evaluated by using equations (A2.3) and (A2.4) together with 

(cLci+x,o(1- n i + y , o ) ) / ( l -  no)' = P ~ ( Y ) P ~ ( Y  - X )  - P ~ ( x ) .  (A2.12) 

In this way we obtain 

C ( v ~ c ~ , c ~ ~ c f - , c ~ - , ~ ~ )  = (1 - n 7 - n 1 Z ~ ~ ( e ~ ) ~ - ~ ( e ~ ) [ 1 -  P-,,(i - 01 
n n 

(A2.13) 

x 22 [n-,  + (1 - n - M , ( e , ) ~ [ ~ % e , )  - yo(( - 01. (A2.14) 

If we nowsum over the possible nearest-neighbour pairs ( i , j )  and f j ,  I )  we finally obtain 
equation (3.10~). 

0 
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